HOME | Raspberry Pi | ビジネス書籍紹介 | 2026-01-04 (Sun) Today's Access : 304 Total : 1261002. Since 10 Sep. 2019

FM音源YMF825+micro:bit編
2020.01.24

YouTube 動画でポイントを説明しています。画像をクリックすると再生できます。

今回は、ヤマハのFM音源YMF825ボードとmicro:bitをSPI接続し、SSH経由でノートパソコンのキーボードを鍵盤に見立てて音を鳴らせてみます。 また、音源のアルゴリズムも変更してみます。

ここでの前知識として、下記のYouTube動画と解説をご覧ください。
micro:bitをコマンドラインで使う

■構成図


ラズパイ・ゼロWHとmicro:bitは、USBケーブルでシリアル接続しています。また、micro:bitとYMF825は拡張シールドを介してSPI接続しています。
OSには、Raspbian Stretch を使用しています。Raspberry Pi の操作は、パソコンからSSH接続にて行います。

■micro:bit のピン配置
micro:bit は、I2C、SPIインターフェースを内蔵していますが、I2Sがないのが残念です。

BBC micro:bit
英国BBCの教育向けシングルボードコンピュータです。micro:bitはプログラミング可能な小さなコンピューターで、学習や教育が楽しく簡単に出来るようにデザインされています。

■micro:bit 用拡張シールド
micro:bit単体では、YAMAHAのFM音源YMF825と接続できないので、拡張シールドを用います。 micro:bit は3.3V稼働、FM音源YMF825は5V仕様なので、レベル変換に対応したシールドを使います。 下記のシールドでは、micro:bitにプログラムを転送する際には、micro:bit本体とラズパイをUSB接続する必要があります。 プログラム転送後は、micro:bit側のUSBケーブルを外しても、拡張シールド側の電源供給でmicro:bitも接続機器も稼働します。

Micro:bitマイクロビット センサーシールドV2 3.3V 5Vプログラミング拡張
I2CやSPI通信ピンなど、一般的に使用されているシリアル通信インタフェースを2.54mmピッチのピンまたはメスヘッダに拡張。マイクロ:ビット制御ボードと他の通信デバイス間の通信を可能にします。
センサーに電力を供給するとき、ジャンパーキャップV1とV2を通して供給電圧3.3Vか5Vを選ぶことができます。

■YAMAHA FM音源 YMF825ボード
YMF825は、4オペレータのFM音源、最大16音同時に発音可能、FMの基本波形29種類内蔵、アルゴリズム8種類、SPIによるシリアルインタフェース、スピーカアンプ内蔵、3バンドイコライザ内蔵、16 bitモノラルD/Aコンバータ内蔵で動作電圧5Vです。
ヤマハFM音源LSI YMF825搭載モジュール YMF825Board
ヤマハのFM音源チップYMF825(SD-1)を搭載した音源ボードです。ヤマハ独自のFMシンセサイザを搭載し、数種類のパラメータ指定により豊かなサウンドを再生することが可能です。 ArduinoやRaspberry Pi等のマイコンボードから、SPIを通して直接YMF825のレジスタを制御することで発音させます。スピーカーアンプも搭載しているので、アンプ回路を別途外部に用意する必要がありません。

■YMF825ボードと拡張シールドの結線
YMF825と拡張シールドをSPI接続します。
 YMF825Board  -  micro:bit
SS   -  P16:SS (chip select)
MOSI   -  P15:MOSI (serial data output)
MISO   -  P14:MISO (serial data input)
SCK   -  P13:SCK (serial clock)
GND   -  GND:ground
5Vin   -  5V :power
RST_N (reset)     
Audio Out 
3.3Vin 
micro:bit 側の機能割振りのないデジタル8番ピンをリセットに使用してもよいのですが、接続しなくても問題ないようです。


配線すると、こんな感じになります。シールドのUSB端子は電力供給用です。5Vの電力供給を行うには、シールド側に電源用USBケーブルを挿す必要があります。 また、ここにラズパイからのUSBケーブルを挿しても、micro:bitと通信できません。ラズパイとのシリアル通信にはmicro:bit本体とUSB接続します。
YMF825には、SPEAK OUTの他に、3.5mmヘッドフォン出力があるので、そこにミニジャックを挿しても構いません。
今回は、パソコンからmicro:bit側のプログラムへ逐次データ送信を行うので、micro:bit本体側USBケーブルも挿したままにします。

■サンプルプログラムの使い方

下記の2つのプログラムをダウンロードします。
main.py
ymf825.py

micro:bit へ転送します。
$ ufs put main.py
$ ufs put ymf825.py

minicom を起動して、micro:bitをリセットします。
$ minicom -b 115200 -o -D /dev/ttyACM0

ラズパイとmicro:bitとのシリアル通信のコードはこんな感じです。
コード変換の部分はもうちょっとスマートな書き方があるかもしれません。
while True:
  if uart.any():
    s = uart.read()
    key = chr(ord(s))
    if key == 'q':
      break
    elif key >= '0' and key <= '7':
      ymf.setAlgorithm(int(key))
      uart.write('Algorithm=' + key + '\r\n')
    elif key in notes:
      note = notes[key][0]
      ymf.keyon(0, 0, note)
      uart.write('note=' + notes[key][1] + '\r\n')
      sleep(200)
      ymf.keyoff(0);
      sleep(10);
    else:
      continue
minicom 上でキーボードを叩いてみましょう。 このプログラムでは、ノートパソコンのキーボードをピアノの鍵盤にみたてて、キーを押すと音が鳴るようにしています。 [Shift]キーを押しながら、キーを押すと1オクターブ上の音が鳴ります。

def keyon(self, toneIndex, channel, note):
  freqNum=self.noteFnum[note%12]
  block=int(note/12)
  freqNumH=((0x0380 & freqNum)>>4)|block
  freqNumL=0x7f&freqNum

  mosiChar( 0x0B, channel)
  mosiChar( 0x0C, 0x54)
  mosiChar( 0x0D, freqNumH)
  mosiChar( 0x0E, freqNumL)
  keyTone=0x40|(toneIndex&0x0f)  # 0x40:KeyOn
  mosiChar( 0x0F, keyTone)
また、YMF825は4オペレータのFM音源と8種類のアルゴリズムを実装しています。 0~7までの数字キーを押すと、下記の番号に対応して、アルゴリズムを変更できます。
※実際にはアルゴリズムは4つのオペレータと深く絡んでいるので、各オペレータの情報も修正しないとよい音質は得られません。

def setAlgorithm(self,num):
  self.tone_data[2] = 0x40|num
  mosiChar( 0x08, 0xf6 )
  sleep(1)
  mosiChar( 0x08, 0x00 )
  mosi( 0x07, self.tone_data, 35 )
このプログラムでは実装していませんが、YMF825には29種類の波形が内蔵されているので、波形を変更するのも面白いかもしれません。
ソースコードでいうと、下記の部分です。 YAMAHA YMF825 の Tone Paramater 資料と、FM音源の専門書を参考に、自分だけの音を作ってみてはいかがでしょうか。
tone_data = [
  0x81,                               # 80H + Tone Number
  0x01,                               # BO (Basic Octave)
  0x43,                               # LFO,ALG
  0x00,0x67,0xFF,0x9D,0x00,0x10,0x40, # Operator1 Setting
  0x21,0x33,0xE2,0xA3,0x00,0x50,0x00, # Operator2 Setting
  0x10,0x41,0xD3,0x88,0x01,0x10,0x00, # Operator3 Setting
  0x21,0x62,0xD4,0x02,0x01,0x10,0x00, # Operator4 Setting
  0x80,0x03,0x81,0x80]                # Footer


ここで、重要な事に気付いてしまいました!
micro:bit を拡張シールドに装着すると、可愛くない!
見た目の美しさが半減、いや7割減です!
これなら、ブレッドボードに Arduino Nano を挿して使ったほうが整然としていて美しい。

■参考資料
yamaha-webmusic/ymf825board System Setting
yamaha-webmusic/ymf825board Tone Parameter
Fabble

Arduino と micro:bit の性能比較
Arduino Nanomicro:bit
CPU: Atmel Atmega328P
8bit@16MHz
nRF51822(ARM Cortex M0)
32bit@16MHz
Flash Memory: 32KB 256KB※
RAM: 2KB 16KB
GPIO: Digital=14
Analog=8
GPIO=19
LED: 1個 25個
加速度センサー: × MMA8653FC
磁気センサー: × MAG3110
スイッチ: × タクトスイッチ2個
USB: mini-type micro-type
無線: × BLE
電圧: +5VDC +3.3VDC
言語: Arduino言語 JavaScript/MicroPython
サイズ: 18mm×42mm 52mm×42mm
※MicroPythonファイルシステムで 利用可能な容量は約 30KBです。
Ref. BBC micro:bit MicroPython ドキュメンテーション
※micro:bitの温度センサーは室温ではなく、micro:bitの基板に搭載されているICチップの温度です。

Raspberry Pi(ラズベリー パイ)は、ARMプロセッサを搭載したシングルボードコンピュータ。イギリスのラズベリーパイ財団によって開発されている。
2020.01.05 第1回 abcjs 楽譜作成・演奏スクリプト
2020.01.09 I2S通信によるハイレゾ音源再生
2020.01.18 MIDI再生:FM音源YMF825+Arduino編
2020.01.24 FM音源YMF825+micro:bit編
2020.02.13 Piano Hat & Rosegarden
2020.03.18 テキスト読み上げ gTTS
2020.05.19 テキスト読み上げ AquesTalk pico LSI
2020.06.22 波形処理 第1回 音の波と三角関数
2020.07.22 波形処理 第2回 平均律と純正律
2020.08.26 波形処理 第3回 黒鍵と白鍵
2020.11.21 深層学習 第1回環境整備
2020.12.19 深層学習 第2回マルコフ連鎖・自動歌詞生成
2021.01.02 深層学習 第3回コード進行解析
2021.01.16 波形処理 第4回 コード演奏
2021.08.07 MIDI制御/Adafruit Music Maker
2021.08.23 MIDIフォーマット解析
2021.10.10 音声ファイルの切貼り
2022.09.16 USB-MIDI
2023.01.16 MAX98537 & PCM5102
2023.03.15 音源サンプリング
2023.06.16 ヤマハ音源IC YMZ294
2024.01.07 内蔵DACによるWAV再生
2024.03.23 Piano Hat for MIDI
2024.08.08 シンプルな16bit DAC
2024.09.09 ESP32-S3 USB MIDI
2024.11.10 音声変換・参照音声編集
2024.11.24 音声変換 Seed-VC
2024.12.11 音源IC SN76489
2025.01.10 ttymidi + SAM2695
2025.02.08 YMF825 + ESP32
2025.05.08 Small World 4MH711
YAMAHA YMU251-D
2025.05.23 Small World 4MH711
NJM2073
2025.06.08 Small World 4MH711
オリジナル・クロック
2025.06.23 Bluetooth Emitter
2025.11.20 NANO ESP32 統合環境
2025.11.24 MIDIキーボード→VS1053再生
2025.12.08 MP3 Player Shield

たいていのことは100日あれば、うまくいく。長田英知著
「時間がなくて、なかなか自分のやりたいことができない」 「一念発起して何かを始めても、いつも三日坊主で終わってしまう」 「色んなことを先延ばしにしたまま、時間だけが過ぎていく」 そこで本書では、そんな著者が独自に開発した、 まったく新しい目標達成メソッド「100日デザイン」について、 その知識と技術を、余すところなくご紹介します。

まんがで納得ナポレオン・ヒル 思考は現実化する
OLとして雑務をこなす日々に飽き足らず、科学者だった父が残した薬品を商品化すべく、起業を決意した内山麻由(27)。彼女はセミナーで知り合った謎の女性からサポートを得ながら、彼女と二人三脚でナポレオン・ヒルの成功哲学を実践し、さまざまな問題を乗り越えていく。 ヒル博士の<ゴールデンルール>に従い、仕事に、恋に全力疾走する彼女の、成功への物語。

今日は人生最悪で最高の日 1秒で世界を変えるたったひとつの方法 ひすいこたろう著
偉人の伝記を読むと、最悪な日は、不幸な日ではなく、新しい自分が始まる日であることがわかります。最悪な出来事は、自分の人生が、想像を超えて面白くなる兆しなのです。偉人伝を読むことで、このときの不幸があったおかげで、未来にこういう幸せがくるのかと、人生を俯瞰する視線が立ち上がるのです。

ご飯は私を裏切らない heisoku著
辛い現実から目を背けて食べるご飯は、いつも美味しく幸せを届けてくれる。 29歳、中卒、恋人いない歴イコール年齢。バイト以外の職歴もなく、短期バイトを転々とする日々。ぐるぐると思索に耽るけど、ご飯を食べると幸せになれる。奇才の新鋭・heisokuが贈るリアル労働グルメ物語!

【最新版Gemini 3に対応!】できるGemini (できるシリーズ)
Geminiを「最強の知的生産パートナー」として使いこなすための、実践的なノウハウを凝縮した一冊です。 基本的な操作方法から、具体的なビジネスシーンでの活用、日々の業務を自動化するGoogle Workspaceとの連携、さらには自分だけのオリジナルAIを作成する方法まで余すところなく解説します。

Rustプログラミング完全ガイド 他言語との比較で違いが分かる!
Rustの各手法や考え方を幅広く解説! 500以上のサンプルを掲載。実行結果も確認。 全24章の包括的なチュートリアル。

ポチらせる文章術
販売サイト・ネット広告・メルマガ・ブログ・ホームページ・SNS… 全WEB媒体で効果バツグン! カリスマコピーライターが教える「見てもらう」「買ってもらう」「共感してもらう」すべてに効くネット文章術

小型で便利な Type-C アダプター USB C オス - USB3.1 オスアダプター
Type-C端子のマイコンボードをこのアダプタを介して直接Raspberry Piに挿すことができます。ケーブルなしで便利なツールです。

Divoom Ditoo Pro ワイヤレススピーカー
15W高音質重低音/青軸キーボード/Bluetooth5.3/ピクセルアート 専用アプリ/USB接続/microSDカード

電源供給USBケーブル スリム 【5本セット】
USB電源ケーブル 5V DC電源供給ケーブル スリム 【5本セット】 電源供給 バッテリー 修理 自作 DIY 電子工作 (100cm)

Copyright © 2011-2027 Sarako Tsukiyono All rights reserved®.