HOME | Raspberry Pi | ビジネス書籍紹介 | 2021-09-19 (Sun) Today's Access : 166 Total : 354160. Since 10 Sep. 2019

電卓を制御して数字を表示する
2020.04.10

YouTubeでポイントを説明しています。画像をクリックすると再生できます。

今回はラズベリーパイからシリアル通信で数字を送信して、電卓の蛍光表示管にその数字を表示させます。
手っ取り早く、LEDに表示させてもよいのですが、昭和レトロを楽しんでみましょう。

■蛍光表示管(Vacuum fluorescent display、VFD)
蛍光表示管(けいこうひょうじかん)は、1966年に伊勢電子工業(現在のノリタケ伊勢電子)の中村正(なかむら ただし、1923年-2013年)博士らによって発明された日本オリジナルの技術です。 家電製品で数行の文字や数字が青白色などで光っているディスプレイのほとんどがLEDではなくて蛍光表示管です。 海外で発明された液晶ディスプレイの特許料が高かった時代、すなわち1970年代の電卓戦争時代に電卓のディスプレイとして使用するためにVFDが採用され技術が進歩しました。

このVFD管に数字を表示させる回路を1から作ろうとすると、昇圧制御や面倒な回路が必要になるので、昭和のレトロな電卓を改造して利用します。

■パーソナル電卓の歴史
CASIO MINI(初代カシオミニ) 1972年8月発売、12,800円
1970年頃に、それまで企業向け需要で販売を伸ばしてきた電卓の売れ行きに頭打ち傾向が見えるようになったことから、カシオ計算機の社内で新たな需要の掘り起こし策として「個人向け電卓」の可能性を検討し始めたのが開発の端緒といわれています。 同社では「個人向けとなると価格が1万円を切らないと売れないだろう」と判断し、当時の社員の志村則彰を中心に、実際に1万円でどの程度の電卓が作れるのかを検討し始めました。
カシオミニ(CASIO MINI)は、カシオ計算機が1972年8月3日に発売した小型電卓です。 表示はわずか6桁、入力キーに小数点はなく、表示も小数点以下は表示されず、小規模なお金の計算に特化されたものでした。 値段が商店や家庭でも買える価格帯となったことでわずか10ヶ月間で100万個出荷されました。 表示の特徴として割り算の答えは整数でしか表示されませんが、下段左から2個目の▲キー(下位桁呼び戻しキー)を押すことにより、割り算の場合は小数点以下6桁までが、掛け算の場合は合計12桁までが表示可能になります。
基板は手前に計算機本体とキーボタン、表示機、後ろ側にはFL管の昇圧回路基板があります。 表示に6本の独立した蛍光表示管を使い、それ故それぞれの球はぴったりと横に並んでいません。
一般に「世界初のパーソナル電卓」として知られ、それまで企業向け製品というイメージの強かった電卓が個人にも普及する契機となった一方で、電卓市場の価格破壊の皮切りともなった製品です。

CASIO personal-mini CM-606: 1974年11月発売、5,800円
大衆化を狙った低価格モデル登場。型名に "personal" の文字が入り、電源電圧が3V(単三電池2本)になりました。

今回はこのCASIO personal-mini CM-606を使って、システムを組み立てます。

■システム概要


■CM-606に小細工
メルカリで送料込み2200円で購入した、CASIO personal mini (CM606)。
電池ボックス内のネジ1個と基板上のネジ5個を外します。
上蓋の内側。さすが昭和の電卓!数字キーを押したときに反応するバネ上のスイッチが並んでいます。キーを押すと、基板の回路と接触して電気が流れる仕組みです。 現在の電卓はスイッチ部分にフィルム基板が使われているものが多く、これでは小細工が効きません。
基板本体です。左側に蛍光表示管(VFD管)が付いています。 基板は上下2枚あり、上の基板はスイッチと連動していて、下側の基板と9本のピンでつながっています。

上側の基板を開いた画像です。 右側の9本のピンの横に、上からGND、KC2、KO2、KO3、KO4、KC4、KC3、KC1、KO1と刻印されています。 この9本のピンにリード線をはんだ付けして、外部に引っ張り出します。

はんだ付けは、下側の基板の底の部分から行います。左側は電源を導き出しています。

ネジを閉めて、もとに戻します。外部から単三電池2本をつなぎ、数字キーを押して、動作に問題ないか確認をします。

9本のピン番号とリード線の色を整理しておきます。
 CM-606   配線 
GND  -  黒
KC2  -  茶
KO2  -  赤
KO3  -  橙
KO4  -  黄
KC4  -  緑
KC3  -  青
KC1  -  紫
KO1  -  白
    
VCC  -  赤
GND  -  黒

■電卓ボタンのシュミュレーション
まずは、電卓から引き出した9本のリード線ををブレッドボード上に配線します。

CASIO personal mini では、マトリックス方式のキー制御が採用されています。 縦線(KC1~4)と横線(KO1~4)の交点が押されることで、ボタンを識別しています。 この組み合わせにより、4×4=16個のボタンを識別できます。

ブレッドボード中央の縦2列、4個に並んだピンを左右1つずつ選んでショートさせ、電卓に表示される数値を確認していきます。
 KC1  KC2  KC3  KC4  GND 
紫(+)茶(+)青(+)緑(+)黒(+)
 KO1 白(-)26.+
 KO2 赤(-)159/C
 KO3 橙(-)048*AC
 KO4 黄(-)37=-
CM-606には19個のボタンがあるので、16個の識別情報では足りません。そこで、GNDを利用することで拡張しています。

■回路制作
組み合わせが決まったところで、回路として組み込んでいきます。
Arduino から「1」と表示させる回路は次のようになります。

スイッチとして利用するトランジスタは電卓のボタン0~9とAC(オールクリア)の11個、電源のOn/Offも行うなら全部で12個必要になります。
トランジスタは手元にあった、2N2222Aを使ってみました。
KC1とKO2を直結したときには、0.16mA流れていたので、ベース電流(Ib)は1/100の0.0016mA程度の電流を想定して抵抗値を算出してみると
Vbe(ベース-エミッタ間電圧)/Ib=0.78V/1.6μA=488KΩ
その近辺の抵抗が100KΩ、1MΩの2種類しか持っていなかったので、1MΩを取り付けてみたところ、Base-Emitter間に、4uA程流れました。


ブレッドボード上に電卓のボタン0~2とACを制御する回路を作ってみました。
この段階では、Arduino の汎用ピンとトランジスタのベースの間に100KΩの抵抗を挟んでいます。
プログラムの開発環境には、PlatformIOを用いています。
$ vi src/cm606.ino
#define K13_PIN 10
#define K12_PIN 16
#define K11_PIN 14
#define AC_PIN   3

void setup() {
	pinMode(K13_PIN, OUTPUT);
	pinMode(K12_PIN, OUTPUT);
	pinMode(K11_PIN, OUTPUT);
	pinMode(AC_PIN,  OUTPUT);
}

void loop() {
	digitalWrite(K12_PIN, HIGH); delay(10);
	digitalWrite(K12_PIN, LOW);  delay(1000);
	digitalWrite(K13_PIN, HIGH); delay(10);
	digitalWrite(K13_PIN, LOW);  delay(1000);
	digitalWrite(K11_PIN, HIGH); delay(10);
	digitalWrite(K11_PIN, LOW);  delay(1000);
	digitalWrite(AC_PIN,  HIGH); delay(10);
	digitalWrite(AC_PIN,  LOW);  delay(1000);
}

$ pio run -t upload
電卓の蛍光表示管に、102と表示されてはクリアを繰り返します。

■Raspberry Pi との連携
シリアル通信により、ラズベリーパイからArduinoへ数字を送り込み、蛍光表示管に表示させます。
void push_key(unsigned char key) {
  switch(key) {
    case '0':
      digitalWrite(K13_PIN, HIGH);
      delay(10);
      digitalWrite(K13_PIN, LOW);
      break;
  ......
}
void setup() {
  Serial.begin(19200);
  pinMode(K13_PIN, OUTPUT);
  ......
}
void loop() {
  int key;
  key = Serial.read();
  if ( key != -1 ) push_key((unsigned char)key);
  delay(100);
}
ここで、問題が発生しました。ラズベリーパイから送信される数字を受信はするものの、トランジスタのスイッチが反応しません。
もともと消費電力の少ないArduino Pro Microは、シリアル通信での消費電力が、I/Oピンに流れる電流低下を引き起こしているようです。
抵抗を100KΩ→10KΩに変更してみました。

ラズパイから、platformio のデバイスモニターを起動して、コンソールから「12021」と打ち込んでみると電卓の蛍光表示管に表示されています。
$ platformio device monitor -p /dev/ttyACM0 -b 19200
12021

■実装
実装に関しては、ブレッドボードに小さく回路を纏めるのはちょっと難しいので、ユニバーサル基板を用います。
抵抗は交換が効くように、基板に直付けはせずに、丸ピンIC用ソケットをはんだ付けして、その上に挿し込む予定です。 電卓への電源on/offも追加しています。


補足:東芝マルチプレクサ TC4501BP
KCとKOの組合せ制御に、東芝のマルチプレクサTC4501BPを使用することも考えました。
制御端子A,B,CのLOW,HIGHの組み合わせで8チャンネル分の回線を選択することが可能です。

残念ながら、KCとKOの電圧の問題で今回は実装できませんでした。

【参考文献】
フリー百科事典『ウィキペディア(Wikipedia)』カシオミニ
フリー百科事典『ウィキペディア(Wikipedia)』蛍光表示管
黒物家電館
アナログマルチプレクサ TC4051BP
アナログスイッチIC 基礎編
 Raspberry Pi(ラズベリー パイ)は、ARMプロセッサを搭載したシングルボードコンピュータ。イギリスのラズベリーパイ財団によって開発されている。
2019.12.13 モバイルバッテリーによる瞬間停電対策
2020.01.01 1280x800 HDMI MONITOR
2020.01.12 micro:bitをコマンドラインで使う
2020.02.04 サーマルプリンタを使う
2020.03.27 M5Stackキーボードを利用する
2020.04.10 電卓を制御して数字を表示する
2020.05.06 箱庭回路 蓄電&昇圧回路
2020.06.29 液晶キャラクターディスプレイLCD1602A
2020.08.03 Seeeduino XIAO
2020.08.09 LGT8F328P - Arduino clone
2020.09.18 電流計測モジュール INA219
2020.09.04 箱庭回路 センサーライト
2020.09.29 シガーライターIC s090c
2020.10.13 自動給水装置 LM393+NE555
2020.12.05 FM放送受信 TEA5767
2021.01.30 DVD Player LED
2021.02.16 癒しの電子回路
2021.03.06 疑似コンソール
2021.04.13 GPIO拡張
2021.08.08 電子ペーパー
2021.09.04 AVRマイコン・ATTiny85


ニーア オートマタ PLAY ARTS改 <ヨルハ 二号 B型 DX版> PVC製 塗装済み可動フィギュア
「NieR:Automata」より、ヨルハ二号B型こと2BがPLAY ARTS改に新たに登場! 高級感の感じられるコスチュームや髪の質感、洗練されたボディバランス、細かなデティールに至るまでこだわり抜かれた逸品。 DX版には通常版のラインナップに加え2Bの随行支援ユニット ポッド042などをはじめ“純白の美しい太刀"白の約定やエフェクトパーツ、自爆モードを再現できる換装用ボディパーツ、シーンに合わせて変えられる顔パーツ2種も付属する豪華な仕様に。 作中のあらゆるシーンを再現することが可能なファン必見の一品となっている。

DIPスイッチで動作電圧を3.3Vと5Vに切り替えられるUNO互換ボード
KEYESTUDIO Plus Board for Arduino UNO R3 with Type-C USB Cable, 3.3V 5V 1.5A Output Current, More Powerful Controller Board USB-シリアルチップ:CP2102 / 動作電圧:5Vまたは3.3V(DIPスイッチ制御)/ 外部電源:DC 6-15V(9V推奨)/ デジタルI / Oピン:14(D0〜D13)/ PWMチャネル:6(D3 D5 D6 D9 D10 D11)/ アナログ入力チャネル(ADC):8(A0-A7)/ DC出力機能の各I / Oポート:20 mA / 3.3Vポートの出力能力:50 mA / フラッシュメモリ:32 KB(うち0.5 KBはブートローダーによって使用されます)/ SRAM:2 KB(ATMEGA328P-AU)/ EEPROM:1 KB(ATMEGA328P-AU)/ クロック速度:16MHz / オンボードLEDピン:D13

エレクトロクッキー Leonardo R3 ATmega32u4 ボード DIY Arduino工作用 - ピンクエディション


Newtonライト2.0 ベイズ統計
ベイズ統計は,結果から原因を推定する統計学です。AIや医療などの幅広い分野で応用されています。その基礎となるのは18世紀に考えだされた「ベイズの定理」です。 この本では,ベイズ統計学のきほんをやさしく紹介していきます。

Interface 2021年10月号
☆特集:~ 格好良さアップ! 機能&信頼性アップ ! ~「 3Dプリンタ & メカ設計入門 」
☆特集2:Pico達人への道…「 C/C++でMicroPython拡張 」


トランジスタ技術 2021年9月号
☆特集:~ 直流・交流・非接触・センサ微小電流の測定ノウハウ ~「電流を正しく測る技術」

トランジスタ技術スペシャル 2021年7月号 宇宙ロケット開発入門
これから開発・活用が進むと期待されている宇宙空間への交通・物流インフラとして、小型・低価格ロケットが注目を集めています。本書では、基本構造から制御メカニズムまで、小型宇宙ロケット開発の基礎知識を実例を交えて解説します。

日経Linux 2021年9月号
【特集1】おうち時間をLinuxデスクトップで楽しむ! Linux環境を作るワザ
【特集2】徹底図解で丸わかり! 「WSL2」入門   Windows 11の新機能を速報!
【特集3】IT自動化ツール AnsibleでWeb導入を自動化
【特集4】ラズパイで楽しむLinuxライフ 「今、会議中」と家族に伝えるプレートをPythonで作ろう


ラズパイマガジン2021年秋号
特集1 サクッと動くパーツ&ライブラリ総覧
特集2 ArduinoライブラリでラズパイPicoを動かす
特集3 古いラズパイをフル活用! Node-REDで 楽しい電子工作
特集4 空気の汚れをラズパイで検知しよう
特集5 ラズパイで楽しむLinuxライフ
特集6 NVIDIAのAIボードが6000円台に!
特集7 M5StickCで始める電子工作 iPhoneからサーボモーターを制御しよう


トランジスタ技術スペシャル 2021年 4月号 No.154「達人への道 電子回路のツボ」
初学者が実用的な電子回路を設計できるようになるためのポイントをまとめました。学校の教科書だけではつかめない基本電子回路やOPアンプ/トランジスタの使い方の実際を、いろいろな視点から解説しています。


Raspberry Pi 3 Model B V1.2 (日本製) 国内正規代理店品
【仕様概要】CPU:ARM 1.2GHz 4コア、GPU:2コア 3D・動画支援、RAM:1GB、ネットワーク:LAN/Wi-Fi/Bluetooth、インターフェース:USB/HDMI/オーディオ/GPIO(UART/I2C/I2S/SPI...)。

ELEGOO Arduino用 Nanoボード V3.0 CH340/ATmega328P、Nano V3.0互換 (3)


ESPr Developer 32
スイッチサイエンス(Switch Science)

協和ハーモネット UL1007 AWG24 耐熱ビニル絶縁電線 リール巻 100m 黒


白光(HAKKO) ダイヤル式温度制御はんだ吸取器 ハンディタイプ FR301-81


サンハヤト TTW-203 テストワイヤ
ブレッドボードとスルーホール間の接続に便利なワイヤですブレッドボード用のオスピンと基板のスルーホール用のバネ性のある端子を組み合わせたテストワイヤです

無水エタノールP 500mlx2個パック(掃除)


ケイバ(KEIBA) マイクロニッパー MN-A04


熱収縮チューブφ1.5
印字無しで綺麗☆ シュリンクチューブ 絶縁チューブ 防水 高難燃性 収縮チューブ (2m, ブラック(黒))


サンハヤト SAD-101 ニューブレッドボード


白光(HAKKO) HEXSOL 巻はんだ 精密プリント基板用 150g FS402-02


【Amazon.co.jp限定】エーモン 電工ペンチ 全長約255mm (1452)


[Amazon限定ブランド]【指定第2類医薬品】PHARMA CHOICE 解熱鎮痛薬 解熱鎮痛錠IP 100錠


Copyright © 2011-2022 Sarako Tsukiyono All rights reserved®.